
Reciprocating Locks

Dave Dice & Alex Kogan

Oracle Labs

Background

• Topic : Mutual exclusion for cache-coherent (CC) systems

• Motivation
▪ Throughput under contention - reduced coherence traffic

▪ Practical – easy to integrate into existing systems (vs CLH)

▪ Gracefully hold many locks ; imbalanced lock sites

▪ Willing to forego strict FIFO

▪ Starvation avoidance - thwart DoS attacks on contended locks

2 Copyright © 2025, Oracle and/or its affiliates

Related

• MCS : gold standard queue-based lock

• CLH : simple ; no explicit linked list – no “Next” pointers

• HemLock in SPAA 2021

• Chen & Huang TPDS 2009
▪ “Bounded-Bypass Mutual Exclusion with Minimum Number of Registers”

▪ Forms and detaches stack of waiting threads with atomic exchange

▪ Global spinning

▪ “Large” atomic variables

3 Copyright © 2025, Oracle and/or its affiliates

Key Primitive

• Concurrent pop-stack

• Push individual item with atomic exchange

• Detach entire stack with atomic exchange

• “items” are addresses of MCS-like queue elements

• Elements represent waiting threads – local spinning

• Each thread knows only immediate predecessor in stack
Returned from exchange operator

4 Copyright © 2025, Oracle and/or its affiliates

Informally

• Arrival segment and Entry segment – lists of waiting threads

• Arriving threads push onto Arrival Segment with exchange

• Lock instance consists of Arrival Word :
▪ 0 = Unlocked

▪ 1 = Locked with empty Arrival Segment

▪ T = Locked where T is most recent arrival (Arrival Segment – ToS)

5 Copyright © 2025, Oracle and/or its affiliates

Informally

• To Acquire :
▪ Push onto Arrival word : 0 ➞ uncontended

▪ Local spinning on element

• To Release : 3 cases
▪ Pass ownership to neighbor on Entry Segment, if any

▪ Detach Arrivals which become next Entry Segment – exchange(1)

▪ Try to switch Arrival word back to unlocked state with CAS

• Invariant : All elements on Entry Segment arrived before any elements
on Arrival Segment

6 Copyright © 2025, Oracle and/or its affiliates

7 2025-1-29Copyright Oracle and/or its Affiliates

0

Owner Arrival Segment Entry SegmentArrival

1 Initial unlocked state

Reciprocating Locks in Action

8 2025-1-29Copyright Oracle and/or its Affiliates

0

A

Owner Arrival Segment Entry SegmentArrival

1

2 A A Arrives

Owner
implicit

Pointer Per-thread element
Address Represents Thread

9 2025-1-29Copyright Oracle and/or its Affiliates

0

A

B A

A

A

Owner Arrival Segment Entry SegmentArrival

1

2

3
B Arrives ; A buried

B : exchange() returned A
List, but not manifest in memory

No “Next” pointer in element

10 2025-1-29Copyright Oracle and/or its Affiliates

0

A

B A

B AC

A

A

A

Owner Arrival Segment Entry SegmentArrival

1

2

3

4 C Arrives

11 2025-1-29Copyright Oracle and/or its Affiliates

0

A

B A

B AC

B ACD

A

A

A

A

Owner Arrival Segment Entry SegmentArrival

1

2

3

4

5 D Arrives

12 2025-1-29Copyright Oracle and/or its Affiliates

0

1

A

B A

B AC

B ACD

A

A

A

A

D

Owner Arrival Segment Entry Segment

BC A

Arrival

1

2

3

4

5

6

A unlocks
Entry Segment is empty, so …

Detach Arrival Segment D-C-B-A via exchange(1)
Suffix C-B-A becomes next Entry Segment

Pass ownership to head of Entry Segment = D
Propagate end-of-segment “A” through chain towards tail

13 2025-1-29Copyright Oracle and/or its Affiliates

0

1

A

B A

B AC

B ACD

A

A

A

A

D

D

D

D

Owner

E

EF

Arrival Segment Entry Segment

BC

BC

BC

A

A

A

B AEF CG

Arrival

1

2

3

4

5

6

7

8

9

E F G arrive – push onto Arrival Segment

14 2025-1-29Copyright Oracle and/or its Affiliates

D

Arrival Segment Entry Segment

B AFG E C

Owner Arrival

9

15 2025-1-29Copyright Oracle and/or its Affiliates

D

C

Arrival Segment Entry Segment

B AFG

FG

E C

E B A

Owner Arrival

9

10

D calls unlock
Passes ownership to successor C
Conveys end-of-segment “A” to C

Borrows from CNA
Same store that conveys ownership (succession) passes

additional information through segment

16 2025-1-29Copyright Oracle and/or its Affiliates

1

D

C

B

Arrival Segment Entry Segment

B AFG

FG

E C

E B A

FG E A

Owner Arrival

9

10

11

C calls unlock
Passes ownership to its successor B

And conveys end-of-segment identity “A”

17 2025-1-29Copyright Oracle and/or its Affiliates

1

1

D

C

B

G

Arrival Segment Entry Segment

B AFG

FG

E C

E B A

FG E A

F E

Owner Arrival

9

10

11

12

B calls unlock
B notices its successor A is also end-of-segment

Entry Segment effectively (logically) empty
Detaches G-F-E Arrivals via exchange(1)

Passes ownership to G
Suffix F-E become Entry Segment

18 2025-1-29Copyright Oracle and/or its Affiliates

1

1

1

D

C

B

G

F

Arrival Segment Entry Segment

B AFG

FG

E C

E B A

FG E A

F E

Owner Arrival

9

10

11

12

13

G calls unlock
Passes ownership to F successor on Entry Segment

19 2025-1-29Copyright Oracle and/or its Affiliates

1

1

1

D

C

B

G

F

E

Arrival Segment Entry Segment

B AFG

FG

E C

E B A

FG E A

F E

E

1

Owner Arrival

9

10

11

12

13

14

15
F calls unlock

Passes ownership to E successor on Entry Segment
Entry and Arrival both empty

20 2025-1-29Copyright Oracle and/or its Affiliates

1

1

1

D

C

B

G

F

E

Arrival Segment Entry Segment

B AFG

FG

E C

E B A

FG E A

F E

E

1

0

Owner Arrival

9

10

11

12

13

14

15
E calls unlock

Entry and Arrival both empty
CAS Arrival word from 1 to 0 – unlocked

Advantages

• Constant-time arrival “doorway” and unlock paths

• Elements “queue nodes” don’t circulate -- like MCS, unlike CLH

• Local spinning on local memory

• Helpful for home-based coherence (Intel UPI fabric)

• Passively NUMA-friendly but not NUMA-aware

• Amenable to modern waiting : WFE | MONITOR-MWAIT | Futex

• Unlike HemLock

• No explicit lists in segments -- like CLH

• Bounded Bypass : avoid starvation

• Entry segment is LIFO but arrival segments FIFO

• If T is waiting then S > T can bypass T at most once per episode

21 2025-1-29Copyright Oracle and/or its Affiliates

Advantages

• Easy to integrate or retrofit under existing APIs – practical

• Thread needs at most one element

• Regardless of the number of locks they hold

• Singleton in TLS or on-stack (arXiv)

• Avoid lifecycle management issues

• Tight space bounds

• Throughput and scalability

22 2025-1-29Copyright Oracle and/or its Affiliates

Advantages

• Improved Throughput -- why ?

• Reduced coherence traffic relative to MCS or CLH

• Conserves interconnect bandwidth and reduces latency

• Fewer coherence misses per acquire-release episode

• Fewer misses to remote memory

• Helps if home-based coherence : Intel UPI

• Coherence miss to a line homed locally to requester may be faster

23 2025-1-29Copyright Oracle and/or its Affiliates

Experiment – Coherence Traffic

• Ad-hoc contention benchmark with single lock

• Non-critical section : empty

• Critical section : advance local PRNG 100 steps – no shared accesses

• Runs fully in CPU-local L2 cache when solo

• Multiple threads : Only coherence misses are from the lock operation itself

• All misses are coherence misses induced by lock algorithm

• Configure for sustained contention

• Linux “perf stat” to read hardware performance counters

• Tally coherence traffic per acquire-release episode

• Ensure performance counter ratios and static analysis agree

• Compare CLH and Reciprocating Locks …

• Abridged : Show only paths and shared accesses used under contention

24 2025-1-29Copyright Oracle and/or its Affiliates

2025-1-29Copyright Oracle and/or its Affiliates

CLH CT

auto E = TLS

E➞Gate = 0

auto pred = L➞Tail.exchange(E)

TLS = pred

while pred➞Gate == 0 : Pause

<CriticalSection>

E➞Gate = 1

Reciprocating CT

TLS.Gate = 0 X
auto succ = L➞Arrivals.exchange(&TLS)

while TLS.Gate == 0 : Pause X
<CriticalSection>

succ➞Gate = NonZero

ARMv8 l2c_cache_inval or hnf_snp_sent 5:4 ratio

Coherence traffic under sustained Contention

Fewer CPU stalls
Less Indirection

Less pointer chasing

Remote

Local

Lock
u

n
lo

ck

Lock
un

lock

Disadvantages

• Branch-y paths : 3 cases in unlock

• Branch predictor misses

• Code complexity higher than MCS or CLH

• More accesses to central arrival word to reprovision Entry Segment than MCS | CLH

• Not FIFO

• Long-term admission unfairness

• “Palindromic” schedule

• Long-standing repeating admission schedules

• Some threads can be admitted twice as often – 2X worst-case bound

26 2025-1-29Copyright Oracle and/or its Affiliates

Future

• Address long-term fairness concerns

• Impose statistical long-term admission fairness

• Randomize order within Entry Segment - maintains bounded bypass property

• Perturb palindromic schedule – will converge to new unfair mode

• Slight periodic perturbations suffice

• Improved encoding of Arrival word simplifies unlock path

• 2 cases instead of 3 – reduced path complexity

• Atomic fetch_add() using low order 2 bits of Arrival word as a tag to encode state

• Described in arXiv long-form

• Apply ”CTR” Coherence Traffic Reduction optimizations from HemLock

• Local spinning with atomic exchange or fetch_add() instead of load()

• Remove 1 additional coherence transaction from contended acquire-release episode

27 2025-1-29Copyright Oracle and/or its Affiliates

Finis

2025-1-29Copyright Oracle and/or its Affiliates28

BACKUP

2025-1-29Copyright Oracle and/or its Affiliates29

2025-1-29Copyright Oracle and/or its Affiliates30

C++ std::atomic<T>::exchange(E)

2x2 Node Xeon Gold Linux 6.x

2025-1-29Copyright Oracle and/or its Affiliates31

C++ std::atomic<T>::compare_and_exchange(E)

2x2 Node Xeon Gold Linux 6.x

2025-1-29Copyright Oracle and/or its Affiliates

CLH CT

auto E = TLS

E➞Gate = 0 ↑
auto pred = L➞Tail.exchange(E)

TLS = pred

while pred➞Gate == 0 : Pause

<CriticalSection>

E➞Gate = 1

Reciprocating CT

TLS.Gate = 0 ↑
auto succ = L➞Arrivals.exchange(&TLS)

while TLS.Gate == 0 : Pause X
<CriticalSection>

succ➞Gate = NonZero

ARMv8 l2c_cache_inval or hnf_snp_sent 5:4 ratio

Coherence traffic under sustained Contention

Fewer CPU stalls
Less Indirection

Less pointer chasing

Upgrade

Remote

Local

Lock
u

n
lo

ck

Lock
un

lock

Historical Origins

• HotSpot JVM objectMonitor.cpp : Contention queue and Entry segment

• 24+ years old

• https://github.com/openjdk/jdk/blob/master/src/hotspot/share/runtime/objectMonitor.cpp

• https://github.com/openjdk/jdk/blob/785e7b47e05a4c6a2b28a16221fbeaa74db4db7d/src/hotspot/share/runtime/
objectMonitor.cpp#L183

• Only recently realized we could make it constant-time

• Written for SPARC : no 64-bit atomic exchange – CAS loop

2025-1-29Copyright Oracle and/or its Affiliates33

https://github.com/openjdk/jdk/blob/785e7b47e05a4c6a2b28a16221fbeaa74db4db7d/src/hotspot/share/runtime/objectMonitor.cpp
https://github.com/openjdk/jdk/blob/785e7b47e05a4c6a2b28a16221fbeaa74db4db7d/src/hotspot/share/runtime/objectMonitor.cpp

Drivers of change for synchronization (why new locks?)

• Software

• DoS Attacks

• More flexible locking APIs (C++) allow more algorithms
Less constraints implies more latitude

• Maximum dispersal placement policy in Linux 6.x scheduler
NUMA effects appear at low thread counts
Favors Reciprocating Locks

• Greenfield : Python ? GIL removal and JIT means synchronization becomes important

• Economic : less concern about power-awareness

2025-1-29Copyright Oracle and/or its Affiliates34

Drivers of change for synchronization

• Hardware

• More cores on die : broke “16” barrier, now 128 and increasing

• Waiting mechanisms : WFE ; MONITOR-MWAIT

• ARM ecosystem evolves away from LL-SC (deeply unfair) with LSE (fairer)

• ARM and RISC-V : weak memory models; fence efficiency

• Apple M silicon entirely different world

• Asymmetric MP : P/E ; Fire/Ice; Big/Small

• Spectre mitigation impacts synchronization economics

• Coherence
▪ UPI (vs QPI) home-based coherence

▪ On-die mesh

▪ On-chip NUMA : Cluster-on-Die

▪ MESI vs MOESI

2025-1-29Copyright Oracle and/or its Affiliates35

Backup : Modern coherent interconnects

• RMR complexity : useful but we want refined measures that better aligned with modern hardware

• NUMA vs NUCA distinction

• MESI MESIF (Intel) MOESI (AMD)

• Invalidation diameter of a store

• Distance in hops : local vs remote

36 2025-1-29Copyright Oracle and/or its Affiliates

Backup : Modern coherent interconnects

• Simple :

• Performance governed by location of requester vs location of cache(s) that hold that line

• Number of caches ; location of caches; state in those caches

• Don’t care about NUMA home location of a cache line except for cold miss
Home location not relevant to performance

• Home-based coherence : intel

• Home ”node” of cache line handles coherence probes – moderates

• More latency and hops but reduced bandwidth – avoid broadcast snoops

• Home location vs requester location becomes a concern

• Performance : requester location; what caches; what states + home location

• CLH element migration particularly undesirable

• Local misses (home = requester) vs remote misses

37 2025-1-29Copyright Oracle and/or its Affiliates

Miscellany

▪ Borrows from CNA :

▪ Same store that conveys ownership also propagates end-of-segment address toward tail of entry segment

▪ Modern linux scheduler placement policy :

▪ Maximum dispersal over NUMA nodes

▪ Round-robin equidistribution

▪ Advantage for reciprocating locks appears with even small number of threads

38 2025-1-29Copyright Oracle and/or its Affiliates

HemLock - disadvantages

• Unlock() path is not constant-time

• Unlocking() thread waits positive ack from successor

• Need to know that ”mailbox” is available for re-use

• Can mitigate by using multiple per thread

• Multi-waiting

• Rare, but results in unbounded theoretical RMR complexity

39 2025-1-29Copyright Oracle and/or its Affiliates

	Default Section
	Slide 1: Reciprocating Locks
	Slide 2: Background
	Slide 3: Related
	Slide 4: Key Primitive
	Slide 5: Informally
	Slide 6: Informally
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21: Advantages
	Slide 22: Advantages
	Slide 23: Advantages
	Slide 24: Experiment – Coherence Traffic
	Slide 25
	Slide 26: Disadvantages
	Slide 27: Future
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33: Historical Origins
	Slide 34: Drivers of change for synchronization (why new locks?)
	Slide 35: Drivers of change for synchronization
	Slide 36: Backup : Modern coherent interconnects
	Slide 37: Backup : Modern coherent interconnects
	Slide 38: Miscellany
	Slide 39: HemLock - disadvantages

