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Abstract

In the context of project lilliput, which attempts to reduce the size of object header in the HotSpot
Java Virtual Machine (JVM), we explore a curated set of synchronization algorithms. Each of the
algorithms could serve as a potential replacement implementation for the “synchronized” construct
in HotSpot. Collectively, the algorithms illuminate trade-offs in space-time properties.

The key design decisions are where to locate synchronization metadata (monitor fields), how to
map from an object to those fields, and the lifecycle of the monitor information.

The readers is assumed to be familiar with current HotSpot implementation of “synchronized”
as well as the Compact Java Monitors (CJM) design [13] and Project Lilliput [1].
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1 Algorithms

All the candidate locking algorithms below are FIFO/FCFS-fair, unless stated otherwise,
and are able to support the full gamut of synchronized operators. All are space-conserving
in the sense that acquiring a monitor requires that a thread contribute a lock record to some
set of records associated with the object, and releasing that monitor reclaims that same
lock record, avoiding the objectMonitor accretion concerns attendant in the existing HotSpot
monitor implementation.

1.1 HashChains

In this variant, synchronized operations do not access the object header. The header
word is never displaced by synchronization and no bits in the header are reserved for
synchronization. This approach is appealing as avoids it multiplexing and overloading of
the header word, simplifying the encoding thereof and reducing couplings between the
synchronization subsystem and other components on the JVM.

unfettered by

The JVM maintains a shared hash table of synchronization buckets. Each bucket
contains a simple mutex lock, and a pointer to the head of a linked list of lock records.
Similar constructs in the linux kernel are sized at startup time, based on the number of
logical processors. For all experiments reported herein, we used 4096 buckets. If necessary
the hash tables could be resized at runtime.

To acquire a monitor, a thread first allocates and constructs a lock record, and then
identifies the bucket associated with the object. We can hash the virtual address of the
object to map to the bucket, although this would require rehashing in the event of moving
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garbage collections. To avoid that, we could instead hash on the object’s identity hashCode
value, although this would necessitate assigning identity hashCode values on objects that
participate in synchronization. Our native C++ implementation hashes on the virtual
address. The thread next acquires the bucket lock, and emplaces its lock record on the
chain. The bucket locks can be simple pthread mutex locks, or any other simple native

Forms, Constitutes, represent, encode

lock, such as MCS locks [20]. Our implementation uses hemlock[15, 16]. The thread then
determines if there are any conflicting lock records on the chain – lock records inserted by
other threads that refer to the same object. Subsequently, the thread releases the bucket lock.
If no conflicting elements were observed, then the thread acquired the monitor without
contention and is the owner of the monitor, and as such, may enter the critical section
without waiting. Otherwise the thread parks, waiting on a field in its lock record to change
state indicating that it has been granted ownership.

The lock record posted by a thread continues to reside on the chain while the thread
executes in the critical section. There is no singular central memory location that encodes
if an object is locked, but rather the locked-ness is determined by the presence or absence
of conflicting lock records on the object’s hash chain. Lock records include a “state” field
which indicates if the associated thread holds the lock, is waiting on the lock, or is in
wait(). The set of lock records resident in the bucket and associated with a given object
form the entry set for that object.

To release a monitor, a thread again acquires the bucket lock and removes the element
it originally posted, moving that element to a thread-local free list, allowing for subsequent
re-use. As threads typically hold a very small number of locks concurrently, we can use
thread-local free lists (stacks) of free lock records. The thread also checks for and identifies
a successor from the set of lock records associated with the object. If no successor is found,
the thread simply drops the bucket lock, otherwise it marks the successor’s lock record as
being the current owner, releases the bucket lock, and unparks the successor.

To allow for efficient IllegalMontorStateExceptions checks, and for nested locking,
and automatic unlocking of monitors, each thread maintains a list of lock records reflecting
the monitors it currently holds.

In our implementation, instead of a simple unstructured “bag” of lock records on the
bucket chain, we use a spine-and-rib design where the spine elements reflect the current
owner, and all remaining threads waiting on that object are linked as ribs off that spine
element, in order to reduce traversal times and thus reduce hold times for the bucket locks.

Lock records could be implemented as native C++ constructs, or as first-class Java
objects. In the case of the latter, much of the synchronization subsystem could be shifted
into pure Java code.

No type-stable memory (TSM) or safe memory reclamation (SMR) is required. Further-
more the design places tight bounds on the amount of memory required for synchronization.
No explicit deflation step is required. Trimming of thread-local free lists of lock records, if
it is every needed – which is unlikely – is a strictly thread-local decision.

While simple, this approach entails a number of performance challenges. To acquire
and release an uncontended monitor, we need to acquire and release the bucket lock twice,
once to post the lock record to the chain, and another to extract it. This results in poor
latency compared to other approaches. The traffic on the chain locks arising from such
“double locking" also impinges on scalability. (Locks that are implemented with an “inner”
or “meta” lock to protect their queues are usually inferior in performance locks that avoid
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inner locks). In addition, we’re exposed and vulnerable to false contention on the bucket
locks because of hash collisions. Even absent bucket lock collisions, we can incur false
sharing and costly coherence traffic when multiple unrelated synchronization operations
interleave accesses on a given bucket. Accordingly, both latency and scalability suffer.

Delegation of concerns; seperation of concerns;

1.2 HashChains+3

HashChains+3 builds on HashChains but also requires 3 bits to be reserved for synchro-
nization in the object’s header word. The bits encode Locked, WaitersExist, and Impatient
indicators. Our implementation does not currently use Impatient, but we reserve the bit to
allow Fissile Locks [12, 14] to provide bounded bypass, if desired, to improve contended
performance. As expected Locked indicates the lock is held. WaitersExist is a conservative
indication – false-positives are allowed but never false-negatives – that contending threads
exist on the associated hash chain. The indicator allows fast-path uncontended unlock
operations when there are no waiting threads.

Arriving threads first attempt to acquire the lock by using CAS to toggle the Locked
bit from 0 to 1. Unlike HashChains, the owner’s lock record does not reside on the chain.
Failing to acquire via that fast-path, threads ensure the WaitersExist bit is set and emplace
on the chain, under the bucket lock, and then park in the usual fashion, waiting on the
“state” field in its own lock record. The chain contains only waiting threads, and never the
owner.

To release the monitor the thread first consults the WaitersExist bit. If clear, the thread
attempts to use CAS to clear the lock bit, while ensuring the WaitersExists bit remains clear.
If the CAS was successful, no further actions are required. Otherwise, if WaitersExists was
set, the thread acquires the bucket lock and detaches a successor, if any. If no additional
conflicting threads (beyond the successor) are present on the chain, it also clears the
WaitersExist bit. The thread then drops the bucket lock, marks the successor’s lock record
as being the new owner, and unparks the successor, passing ownership directly to the
successor. The Locked bit remains held continuously while ownership is conveyed. If no
successor was found on the chain, the thread clears both the Locked and WaiterExist bits
and drops the bucket lock.

Critically, uncontended acquire and release operations do not need to access the hash
chains, improving latency. The hash chains are needed only under contention. Related
ideas worthy of note can be found in WebKit [21].

1.3 CJM

Compact Java Monitors (CJM) [13] are based on the Compact NUMA-Aware Locks
(CNA) algorithm, but forego the NUMA-Aware property and focus instead on the Compact
aspect. CNA is itself a variation on the gold-standard MCS (Mellor-Crummey Scott) [20]
queue-based lock algorithm 1.

Underlying much of the following design is our approach from Compact NUMA-Aware Locks.

1 If you’re unfamiliar with CJM, please see [13]. That document also includes a description of the MCS
algorithm in an appendix. Briefly, MCS uses atomic SWAP and CAS primitives to construct a lock-free
queue – implemented as a singly linked list – of elements, where each element serves to represent an
allocation request by the thread that posted that element. The head element is the current owner and the
MCS lock word points to the tail.
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CNA was published in EuroSys 2019 [11, 7] and is being integrated into the Linux
kernel as a replacement for the existing low-level qspinlock construct [4, 19], which is itself
based on MCS. One of the key ideas in CNA is propagating values of interest from the

CNA is itself a variation on classic MCS.

MCS owner’s queue element into the successor, which allows the lock body to remain
compact – just one word. Specifically, fields that would normally appear in the body of a
lock are instead maintained in the owner’s queue element and, at unlock-time, conveyed
to the successor in the queue.

In the context of the current discussion we’re not interested in NUMA-aware aspects
of CNA, where we propagate the list of remote queue elements through the MCS chain
(avoiding extra fields in the lock body), but instead leverage the fact that the lock body is
compact. Taken to the extreme, CJM shifts all the fields that would normally reside in the
classic HotSpot objectMonitor construct into the MCS queue elements, so we can represent
the abstract Java monitor with just a single pointer to the MCS tail.

When an object is locked, the implementation relocates the entire header word into a
displaced header which is conveyed through the chain. The identity hashCode value will
be assigned on the first synchronization operation on a given instance, in order to avoid
mutating the displaced header. Relatedly, we assume the encoded class (klass) information
in the header is immutable, or at least rarely mutated. And finally, we assume that the GC
age bit field in the header word is also mutated infrequently 2. See Section 6 of [13] for
details.

Accessing the header fields (identity hashCode value, class information, etc) is relatively
simple under CJM. First, if the object is not engaged in synchronization, those fields reside
in their usual “home” position in the object header. If the object happens to be locked by
the thread attempting to fetch the header, which is easily determined, the caller can quickly
extract the displaced header value from the queue element (lock record) it originally posted
to the MCS chain. Finally, if the object is locked by some other thread, which we expect
to be rare, we can use the access protocol described in [13] Section 6 to extract the header
word value. This final mode uses a chase-and-capture idiom that enjoys obstruction-free
progress properties.

Briefly, CJM provides the following desirable properties:

− Eliminates stack-locking, resulting in a simple unified encoding in the header, and only
one flavor of locking.

− Performance on-par with the existing subsystem.
− Extremely simple with fewer lines of code, and easily maintainable.
− FIFO-fair admission policy, whereas the existing system admits unbounded bypass and

starvation.
− Reduced interactions and dependencies on other subsystems : safepoint, GC, etc.

Decoupled

− Avoids accretion of objectMonitors and deferred deflation to recover of those monitors.
Threads contribute one queue element to a monitor’s queue when they acquire the lock,
and recover that same element when they release the lock, resulting in space-conserving
self-cleaning pay-as-you-go memory use with extremely tight bounds. This property is a
key desideratum and improvement over the existing synchronized implementation.

2 The object header fields typify Conway’s Law [23].
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− As described, CJM is FIFO, but to gain more performance we can allow bounded bypass
using the Fissile Locks technique [12, 14].

CJM : All avoid inflation and need for STW deflation; deflate agro ASAP;

Reduced complexity

2 Waiting Policies

The choice of waiting policy – how a thread waits to acquire a contented lock – has subtle
ramifications.

First, when executing in native C++ code we need to respect HotSpot’s “no loitering”
invariant. Threads must not busy-wait indefinitely. Bounded spinning is acceptable, but
threads waiting for some condition to be satisfied must be prepared to resort to parking
after some period. In addition, indefinite polling via operating system provided primitives
such as sched_yield is not sufficient. Polling via timed sleeping is also not acceptable, as
operating system timers don’t scale and can also prevent systems from entering low power
states.

In pure Java code, indefinite spinning is permissible but unwise. Say, for instance, that a
lock implemented in pure Java spins indefinitely without parking. Furthermore say that we
have more ready threads than logical CPUs, so operating system preemption (involuntary
preemption) is in play. If the lock holder is preempted then we have to wait for spinning
threads to be preempted and the CPU to be passed to the lock holder to achieve succession
and progress. Similar stalls can occur if the lock holder transfers ownership to a preempted
successor. Involuntary preemption (time slicing) operates on a relatively long time frame (1
to 10 msecs, which is effectively geologic time) and as such, throughput over the contented
lock will suffer.

The current synchronized implementation uses adaptive spinning where we try to
use the success or failure rate of recent spin attempts on a given object to better inform
the spin-park decision and spin duration. ReentrantLock does not spin and immediately
parks on contention.

Our CJM implementation uses a simple spin-then-park STP waiting policy. Simple STP
using a bounded spin duration of half the voluntary context switch “round trip” latency is
2-competitive versus the ideal. That is, STP with a fixed spin duration of half the context
switch latency is never more than 2x worse (performance) than an idealized schedule
where we have an “oracle” with perfect foreknowledge – a so-called offline algorithm – that
tells us in advance the waiting time, and thus lets us decide immediately and with perfect
certainty whether to spin or park when a thread needs to wait for a lock. As we don’t have
such foreknowledge, the spin-versus-park decision is considered an online problem 3. The
spin phase uses the PAUSE instruction on x86, although MONITOR-MWAIT would be
a better choice if available. (PAUSE loops executed in virtual machines trigger VM exits,
which inform the VM that busy-waiting is taking place, and inform the VM that gang
coscheduling may be called for).

Parking, instead of unbounded spinning, also reduces the number of ready threads,
and acts to forestall the onset of preemption.

keywords: competitive analysis; competitive ratio; ski-rental problem; optimal stopping; worst case analysis; online algorithm; offline algorithm;

Satisfied; condition-of-interest;

The CJM and HashChain implementations reported herein used a maximum (bounded)
spin duration of 2500 PAUSE instructions before they devolve to parking, rechecking the

3 The spin-park problem is equivalent to the Ski Rental Problem [24].
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condition of interest after every PAUSE instruction. Specifically, we execute a loop where
each iteration checks (polls) the condition of interest. If satisfied, we return immediately.
Otherwise we execute a single PAUSE instruction. After 2500 iterations if the condition
is not satisfied, we revert to parking the waiting thread. Spinning is used solely as an
optimistic “bet” to avoid parking and the overheads of context switching. (Unfortunately
the typical latency of a PAUSE instruction varies by a factor of 10 between steppings
on Intel CPUs). All spinning in our implementations is local with at most one thread
busy-waiting on a given location at any given time in order to reduce coherence traffic. In
contrast, simple test-and-set and ticket locks use global spinning.

Busy-waiting or spinning should be performed in a polite fashion, which minimizes the
performance impact of spinning on other threads in the system. Impolite naive spinning
can impede the performance of other coscheduled threads. Crucially, we don’t want the
spinning thread to compete for resources such as power and thermal caps, turbo-mode
enablement, cache residency, interconnect or memory bandwidth, pipelines, etc. On x86,
for instance, the PAUSE instruction can be used for polite spinning. Altruistic spinning
may even benefit the spinning thread, as the lock owner may execute its critical section
and relinquish the lock in a more timely fashion, avoiding the so-called tragedy of the
commons. Note that we intentionally avoid using sched_yield on linux as, with the advent
of per-CPU dispatch queues, it is advisory and has no particular semantics. Yielding is
also not polite to sibling threads co-executing on the system.

Altruism; community awareness; sharing; tragedy of the commons

PAUSE and sched_yield do not suffice for long-term indefinite waiting ; must park Avoid depending on OS preemption, which operates over long time scales, for progress.

The succession policy is convolved with waiting policies. Succession describes how a
lock algorithm conveys ownership to waiting successors.

Direct handoff transfers ownership directly from the outgoing thread to the designated
successor. Examples include CJM, MCS, CNA, the linux kernel’s qspinlock and Java’s
ReentrantLock in fair (FIFO) mode. All FIFO/FCFS lock algorithms use direct handoff
but direct handover locks are not necessarily FIFO. Direct handover perform poorly when
preemption (involuntary context switching – oversubscription) is in play, as would be
the case when the number of ready participating threads exceeds the number of logical
CPUs. In particular, direct handoff allows ownership to be transferred to preempted thread.
Direct succession also performs poorly when parking is in use as the overheads incumbent
in voluntary context switching are subsumed into the critical section, greatly increasing
the effective length of critical sections. If we unpark a successor, it typically takes more
than 10000 cycles for the wakee to resume and return from park (and even more if the
wakee is dispatched onto a CPU that was previously idle in deep sleep states). Using a
spin-then-park waiting policy can provide some relief against that problem. Unfortunately,
if we use a spin-then-park waiting policy with a FIFO admission policy, the immediate
successor will be the thread that has waiting longest, and is thus most likely to have
consumed its spin allotment and resorted to parking. This can result in a rather abrupt
drop in performance in certain areas of the parameter space, violating the principle of least
surprise.

All the HashChains forms are ostensibly FIFO. But, as they use an additional internal
lock to protect their queues, it is possible that thread T1 arrives before T2 in when calling
Lock(L) but T2 beats T1 to the inner lock and enqueues before T1. In practice this is not a
significant concern.

Competitive handoff releases ownership and, if necessary, “pokes” a potential succes-
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sor – the heir apparent – to retry the lock and ensure progress. Competitive handoff is
also known as barging, bypass, pouncing or renouncement. After the owner releases owner-
ship in unlock(), newly arriving threads in lock() can pounce on the lock, and bypass
(barge past) other threads that have waited longer. Example of algorithms and imple-
mentations that use competitive handoff include Java’s synchronized, ReentrantLock,
pthread_mutex primitives, test-and-set locks, etc. Competitive handoff admits long-term
unfairness and starvation. In addition, the degree of unfairness is influenced by the fairness
of the platform’s cache arbitration policy, and thus varies. Perversely, simple test-and-set
locks are NUMA-friendly on x86 platforms, as threads on the same node are more likely to
acquire ownership of a just released lock.

Competitive succession, however, tends to be more tolerant of preemption, as the
successor, by definition, was on a CPU when it acted to acquire the lock, avoiding the
scenario where we pass ownership to a preempted thread as can manifest with direct
handoff.

As a general observation, locks that use competitive handover will yield better aggregate
throughput than those that use direct handover. This drives the use of competitive
handover for common locks such as ReentrantLock, default pthread_mutexes and Java’s
synchronized. Competitive succession, however, allows unbounded unfairness.

Approaches such as Concurrency Restriction [9, 10] and Malthusian Locks [6, 5] act to
intentionally reduce the number of threads circulating over a lock in some period, and
improving the performance of various lock algorithms, particularly those that use direct
handoff.

We can capture the best attributes of competitive handoff and direct handoff with hybrid
schemes such as Fissile Locks [12, 14], which allow competitive succession over the short
term, but if waiting threads become impatient we switch briefly to direct handover to avoid
starvation. The aggressiveness with which waiting threads determine they have become
impatient acts as a tunable “knob” to strike an explicit trade-off between throughput and
fairness, and reflects the inherent tension between those properties. (Infinite patience is
equivalent to full competitive succession, and no patience makes Fissile locks equivalent
to directed handoff). The tactic provides bounded bypass. CJM-By (below) employs this
approach. The implementation used in this paper inhibits bypass after the longest waiting
thread has waited more than 1 millisecond.

Addition discussion on the topic of waiting and succession policies can be found in
Section 5.1 of [5].

3 Empirical Results
Evaluation; SuT

Unless otherwise noted, all data was collected on an Oracle X5-2 system. The system
has 2 sockets, each populated with an Intel Xeon E5-2699 v3 CPU running at 2.30GHz.
Each socket has 18 cores, and each core is 2-way hyperthreaded, yielding 72 logical CPUs
in total (2x18x2). The system was running Ubuntu 20.04 with a stock Linux version 5.4
kernel, and all software was compiled using the provided GCC version 9.3 toolchain at
optimization level “-O3”. 64-bit C++ code was used for all experiments. Factory-provided
system defaults were used in all cases, and Turbo mode [22] was left enabled. In all cases
default free-range unbound threads were used (no pinning of threads to processors).

All the underlying native C++ locking algorithms support the full gamut of synchro-
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nization and hashCode operations. This framework – the locks, exposing a common API,
and the associated benchmarks – serve as a useful and faithful in-vitro model for the per-
formance of synchronized activities in HotSpot. The locking algorithms are implemented
via portable C++ std::atomic primitives and a park-unpark interface based on per-thread
mutex-condvar pairs. By using std::atomic, no explicit memory fences or barriers were
required. To reduce false sharing, each lock record was sized at 128 bytes and aligned
accordingly.

We collected performance data with a synthetic MuteBench micro-benchmark, which
measures performance under lock contention. When we transliterate the benchmarks from
C++ to Java, we see that the C++ CJM algorithms yields about the same performance as
the existing HotSpot synchronized implementation. We note that the existing HotSpot
synchronized implementation is superior to equivalent pthreads code for both contended
and uncontended operations, a property expected by developers and which we want to
retain. 4.

Comparable; equilibrate; Track closely; proven faithful; in-vivo vs in-vitro

Retain; preserve; protect;

Note that ideal scalability, even absent and communication or contention, is elusive
because of conflicts for shared resources, caps on energy, and thermal constraints. See
Section 7 Maximum Ideal Scalability of [8].

The MutexBench benchmark spawns T concurrent threads. We have a global pool of NL
shared locks. NL is configured as 1 in all runs reported below. Threads iterate as follows.
Each thread selects NA random locks, without replacement, from the set of NL, forming
a lockset. (The locks are shared, but the locksets are thread-private). To avoid deadlock,
we sort the lockset by address. We also configure NA as 1 for all runs reported below 5.
Each thread acquires all the elements of its lockset, and then executes a critical section of
CSL steps of a shared C++ std::mt1993 pseudo-random number generator. The thread
then immediately releases the lockset elements in reverse order, mimicking Java’s usual
last-acquired-first-released pattern. The thread then executes a non-critical phase where
it first computes a uniform random value in the range [0, NCSL ∗ 2) and then executes
that many steps of a a thread-local std::mt1993 random number generator. The average
and median duration of the non-critical phase is NCSL steps of the thread-local random
number generator. We intentionally randomize the non-critical section duration to avoid
entrainment where threads would otherwise tend to enter the critical section in a relatively
stable cyclic order, which can persist for long periods, and where the number of NUMA
node transitions inherent in that schedule is determinative of performance. NCSL and

4 Say we have group of threads contending on a single high-traffic pthread mutex, where threads arrive
and depart frequently. The user-mode pthread mutex implementation in glibc does not use spinning,
so contended threads immediately resort to blocking in the kernel via the futex mechanism. The linux
kernel spin lock that protects the futex hash chain associated with that user-mode mutex address will
itself become highly contended, often to the point where most of the waiting time is for that spinlock,
instead of “normal” waiting for a wakeup notification. When we implemented Compact NUMA-Aware
locks (see section 7 of [7]) we observed that improved kernel spin locks (those protecting the futex
chains) sped up the futex operations and in turn sped up apps with highly contended pthread mutexes.
Equivalent contended synchronized code running in the HotSpot JVM saw no such benefit as each
thread already blocked on its own parking construct, and therefore we avoided hot futex chains. Put
differently, the approach used by the JVM where each thread has private parking constructs serves to
diffuse accesses over the set of kernel futex hash chains, avoiding hotspots and conferring an advantage.
The decay in scalability exhibited by contended pthreads mutex operations in Figure 1, below, arises
from this secondary contention.

5 We took data over a wide range of NA and NL values but opted to report on runs where both values
were set to 1.
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CSL are specified as command-line arguments. At the end of a 10 second measurement
interval the benchmark reports the total number of aggregate iterations completed by all
the threads. We report the median of 7 independent runs. (To assist in detecting potential
safety “exclusion” errors, after the measurement interval, the benchmark resets the shared
PRNG state and then, in single-threaded execution, advances the PRNG by the total number
of iterations completed, and then ensures the final state agrees with the state of the PRNG
at the end of the measurement interval).

In the figures below the X-axis reflects the number of concurrently executing threads
contending for the lock, and the Y-axis reports aggregate throughput. For clarity and to

the tally of all loops executed by all the threads in the measurement interval

convey the maximum amount of information to allow a comparison of the algorithms, the
X-axis is offset to the minimum score and the Y-axis is logarithmic.

To facilitate comparison, we also include performance data on a version of the MutexBench
benchmark transliterated to java, using synchronized, ReentrantLock, and ReentrantLock

in FIFO mode. We used JDK version 16.0.2 with the following command-line arguments
-server -XX:-UseBiasedLocking -Xmx10G -Xms10G -XX:+EnableContended. As we also
collected data with ReentrantLock, we sized the heap at 10Gb as that locking algorithms
allocates a new queue element for each acquisition [18] and puts pressure on the allocator
and collector. We employed @Contended to avoid false sharing between ReentrantLock

instances and other data elements. To deal with variance, each benchmark process executes
7 sub-runs of 10 seconds each. An external script runs the benchmark 3 times in sequence,
with completely independent processes, for total of 21 runs of 10 seconds each. We report
the median value of those 21 runs for aggregate throughput.

To allow comparison against simple pthreads we also included a form of MutexBench
where each object contained an full embedded pthread_mutex instance.
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Figure 1 Maximum Contention
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Figure 2 Moderate Contention
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Figure 3 Light Contention

Figures 1, 2 and 3 report the aggregate throughput of contended locking opera-
tions with MutexBench. synchronized, ReentrantLock and ReentrantLock-FIFO reflect
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MutexBench ported to Java. pthreads is a degenerate version of our native C++ lock-
ing framework where each object incorporates a pthread_mutex lock. HashChain and
HashChains+3 are described above. CJM-FIFO is simple CJM and CJM-By is CJM with
bounded bypass enabled.

Figure 1 shows extreme contention, with empty critical and non-critical sections, on a sin-
gle “hot” lock. CSL and NCSL are both configured as 0. We see that ReentrantLock-FIFO
scales poorly as the cost of park and unpark operations and the futex operations are
subsumed into the effective critical section length. The other FIFO forms that use spin-then-
block waiting (CJM-FIFO, HashChains, and HashChains+3) tend to cluster in a band.
The spin duration is largely sufficient to avoid parking. As noted above, pthreads fades
because of futex sleep chain kernel spin lock contention induces by user-level pthread con-
tention. ReentrantLock provides the best performance closely followed by synchronized.
ReentrantLock and synchronized admit long-term unfairness. Over a 10 second interval,
it is not uncommon to see a 3x difference between the thread that accomplished the most
iterations versus the thread that completed the least iterations. CJM-By with bounded
bypass performs almost as well as synchronized and ReentrantLock but is much fairer
over the measurement interval.

The data at 1 thread also serves as a good measure of uncontended latency. We can
see, for instance, that HashChains exhibits increased latency, because of the longer paths
needed to acquire and release the bucket locks.

Figures 2 (CSL=1 and NCSL = 200) and 3 (CSL = 1 and NCSL = 1000) also have a sin-
gle hot lock, but use a very short critical section with longer non-critical sections, reflecting
more likely real-world scenarios. Broadly, CJM-By, synchronized and ReentrantLock

provide comparable performance.
CJM with bypass provides reasonable scaling – in keeping and competitive with the

existing synchronized and ReentrantLock implementation – avoiding the performance
collapses and retrograde scaling exhibited by some of the other locks. In addition, CJM
with bounded bypass provides long-term fairness, in contrast to pthreads, synchronized
and default ReentrantLock, but at the same time remains preemption tolerant, unlike the
FIFO locks.

Not surprisingly, dedicating more header word state to synchronization yields better
synchronization performance. The HashChain forms, which are appealing simple, put little
demand on the header, but suffer relative to the variants which use a displaced header
word.

It is worth remarking that our benchmarks used only a single object. If we use multiple
objects, then the HashChain forms start to suffer from false contention in the hash chains,
even for logically uncontended locking.

Operating regimes; region of state space; realms

4 Additional Remarks

1. The CJM variant should be able, with some additional effort, to tolerate GC algo-
rithms that employ forwarding pointers. Presumably the low-order tag bits in the single
header word would encode the following possible states : Normal, Displaced-For-Locking,
Forwarded.

2. If the JVM allows forwarding on-the-fly, by mutators, outside of safepoints, then an
additional approach presents itself. The first time we synchronize on a object, we imme-
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diately copy and forward the object to an instance that has the CJM synchronization
word appended to the object body. At the same time, we change the object’s type
from T to T+ to indicate that the instance now supports the CJM word. Conceptually
we’re cloning the object and changing the type to a new derived class that contains
the CJM word. For a given instance, the state transition is one way. Instead of relying
on the type system, an additional bit in the header could also be reserved to indicate
the has-lockword state. One concern inherent to this approach is that synchronization
operations might trigger out-of-memory conditions, although most synchronization
designs also admit this same problem.

3. It is worth comparing the idea above to the “tri-state” approach reportedly used by some
of IBM’s JVM implementations to reduce the size of the header. 2 bits are reserved in the
header to support the identity hashCode, encoding 3 possible states : neutral, hashed-by-
address, and hashcode-appended. All objects start in neutral state. On the 1st call to query
the identity hashCode, the JVM computes the hashCode as a deterministic function
of the object’s heap address, and shifts the state from neutral to hashed-by-address.
Subsequent calls to query the identity hashCode observe the hashed-by-address state
and recompute and return the same hashCode value. If and when a hashed-by-address
object is moved (copied) by the garbage collector, the collector changes the state to
hashCode appended, and extends the object accordingly, computes the hashCode, and
stores the identity hashCode value at the end of the object. Subsequent calls to query
the hashCode notice the hashcode-appended state and extract the value from the new
field appended to the object. An unfortunate consequence of this tactic is that the
collector can exhaust memory extending objects during a garbage collection operation.
See also https://github.com/rkennke/lilliput/tree/compact-hashcode.
Related ideas can be found in IBM’s J9 lock nursery [2] https://blog.openj9.org/
2019/04/02/lock-nursery/

4. Instead of CJM, we could continue to use the existing synchronization subsystem – with
all its inherent monitor lifecycle problems – and displace the new lilliput single header
into a compact displaced header word, instead of the existing displaced mark word. See
https://mail.openjdk.java.net/pipermail/lilliput-dev/2021-July/000096.html.
CJM, however, lends itself to displaced headers far more gracefully than the existing
synchronized system.

5. Both contended[3] and uncontended performance are critical quality-of-implementation
(QoI) metrics for the design of a synchronization subsystem. Previously, in the era of bus
locking, before cache locking, techniques such as biased locking[17] were used to improve
the latency of uncontended operations. Thankfully, changes in processor architecture
have obviated the need for biased locking, and its incumbent complexity. Contended
performance is usually measure in terms of scalability – aggregate throughput and
Uncontended performance is measured via simple latency. Between the extremes
we also find so-called “promiscuous” objects, which are locked by various threads
but suffer relatively little contention. In this case, coherence traffic usually dictates
performance. Specifically, an implementation should act to minimize write invalidation.
While not as actively studied in the literature, performance is promiscuous mode is also
of importance.

6. For the hash-based variants we’d want to employ a secondary hash function, likely
with a salted nonce, to reduce the threat of DoS attacks against the buckets.
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7. Interactions with projects loom and graal have not been considered.
8. While not required, we assume to the extent reasonable and possible, that the object

header will reside on the last word of a cache line, with the constituent object fields
starting on the following line. This benefits SIMD and superword optimizations and also
reduces the span – the number of cache lines – underlying particular object instances,
improving spatial locality 6.

9. We assume a 64-bit JVM with a 64-bit header word.
Remote; displaced; away; xeno; off-object; decoupled; distal; distant
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A Appendix – Variations

HashChains with Fast-Path : To address the issue of uncontended latency – caused by the
need to acquire and release the chain locks for both acquire and release operations on the
monitor –we can modify HashChains by adding a fast-path that allows threads to insert
and remove a lock record from the bucket chain using just an atomic compare-and-swap
(CAS) operation in the case where the chain is otherwise empty, avoiding the need to
acquire and release the bucket locks. We use a specialized encoding of the lock word for the
bucket lock to indicate a singleton lock record is present. If additional threads (or objects)
access the chain, the chain devolves to normal locking until the chain again becomes empty.
The fast-path optimization is purely a ploy to improve uncontended latency 7.

CJM and Hashed Hybrid : A hybrid of CJM and the hashed forms is also viable. Briefly, in
this form, we displace the header word as in CJM. But to reduce complexity, we protect the
chain of waiting threads with internal locks instead of resorting to the lock-free techniques
used in CJM. This allows the chain to be structured as a tail-anchored circular linked list
(TACLL) which is convenient for our needs. The header word points to the tail element (the
most recently arrived) and the tail points to head, which is the owner. We also maintain
the definitive displaced header word value in the tail element.

Definitive, canonical, authoritative

The locks can be situated in either a shared global array hashed by the object’s virtual
address or hashCode, or we can site the locks in the chain elements. In the latter case, we

7 We collected performance data on this variant, but to avoid clutter in the graphs opted to not report it
below.
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lock the chain by attempting to lock the tail element and then confirming that the element
remains at the tail, “chasing” ownership as needed. (This approach has lock-free progress
properties. If we find the tail changed then some other thread made forward progress). This
variation requires safe memory reclamation for the queue elements, but avoids hashing
and hash collisions (false contention). The same locking protocol is used to access the
displaced header word, which we maintain in the tail element referred to by the header
word. Inserting the initial element, for uncontended acquisition, is accomplished with
an atomic compare-and-swap operation as there is not tail to lock. This also accelerates
uncontended operations.

Access to the header word is accomplished as follows. When the object is not locked
the header is not displaced, and can thus be accessed directly. Specifically, we can fetch the
header word and examine the low order bits, which constitute a discriminated union or
tag, to determine if the object is locked. If the object is locked and the accessor is the owner
(which is easily determined) then the owner can simply find the displaced header word
in the lock record it installed. If the object is locked and the accessor is not the owner, a
situation we expect to be rare, then a more elaborate access protocol is required. In this
situation the accessor locks the chain, as described above, to find the displaced header
word in the tail element.

This approach is simple and effective, but suffers from the “double locking” performance
concern. In addition, both monitor acquire and release operations access the header word,
which is undesirable due to the increased coherence traffic on that location 8.

chase/capture optimistic reading.

progress property is lock-free or obstruction-free but could be strengthened

8 Again, we implemented and collected data on this variant, but opted to omit the performance data in
the evaluation section.
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